
PHYSICAL REVIEW E FEBRUARY 1998VOLUME 57, NUMBER 2
First-order phase transitions in clustering

J. Schneider
Lehrstuhl für Experimentelle Physik V, Universita¨t Würzburg, 97074 Wu¨rzburg, Germany

~Received 16 June 1997!

A characterization of phase transition in a hierarchical clustering process is achieved by first minimizing the
free-energy function and then calculating the splitting direction of the cluster vectors. Starting from this
derivation, this paper gives physical and mathematical criteria for the characterization of the phase splitting of
one into two distinguishable cluster centers. It is particularly shown that, in general, a first-order phase
transition must be expected. If the investigated data set fulfills a certain symmetry, a splitting of one into more
than two distinguishable cluster centers will occur, which is also in all cases a first-order phase transition.
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The investigation of data sets withouta priori knowledge
of their distribution is an important task of data analys
Clustering methods are major tools here~see, e.g.,@1,2#!.
This paper refers to a hierarchical clustering algorithm th
without making any further assumptions, has been deri
from the maximum entropy principle@3,4#. Clusters of data
points are represented byS parameter vectorsya . It can be
shown @5# that the same results may be obtained from
maximum-likelihood principle and the correspondin
expectation-maximization~EM! algorithm@5,6#, if a mixture
of a Gaussian distribution with fixed an equal variances
each iteration step is assumed. Therefore, the annealing
rameterb in @3# corresponds to the inverse of the varian
used in the EM algorithm.

For theoretical formulation of clustering a set ofp data
points $xn%n51

p and S clustersCa has been considered. I
order to compare the thermodynamical quantities such
free energy and entropy, the number of clustersS was kept
fixed. Describing the state of the system by a set of proba
ity distributionPa

n for associating data pointsxn with clusters
Ca ~specified by the parameter vectorya!, we were interested
in the most probable set of cluster vectors. Introducing
squared distance costEa

n5uxn2yau2 for assigning data poin
xn to the clusterCa and applying the maximum-entropy prin
ciple, the association probability is given then by

Pa
n5

e2buxn2yau2

(
a51

S

e2buxn2yau2
5

1

Zn e2buxn2yau2, ~1!

with the partition functionZn @3#. The corresponding free
energy can be derived as

F52
1

b
ln Z52

1

b (
n51

p

lnF (
a51

S

e2buxn2yau2G , ~2!

with the total partition functionZ5Pn51
p Zn. Considering

that the most probable cluster vector set is the one that m
mizes the free-energy function~2!, one obtains a fixed-poin
iteration for the cluster centers
571063-651X/98/57~2!/2449~3!/$15.00
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with Pa
n from Eq. ~1!. Equation~3! was solved numerically

in a deterministic annealing process for a data set simila
the one of@3#, usingp51000 data points distributed on fou
Gaussian clouds in a two-dimensional Euclidean spaceN
52). Starting at small-b values (b.0), b was increased
stepwise by 0.001. At each iteration step, the number of
tinguishable cluster vectorsSC and their degeneration wer
calculated. The results differ from those of@3# in two essen-
tial points. First, after the ‘‘true’’ number of centers had be
reached, no ‘‘cluster explosion’’ was found.~The term
‘‘cluster explosion’’ is used in@3# for splitting of n into a
number greater thann11 distinguishable cluster vectors!
We observed a successive splitting of the cluster centers
1→2→3→4→5••• different cluster vectors. This may b
explained by the smaller stepsize in the annealing proc
~Rose, Gurewitz, and Fox increasedb exponentially by 10%
at each iteration step@4#.! The second and more interestin
result is the splitting of one cluster vector in the center
mass of the data set~c.m. solution! at smallb into two dif-
ferent clusters.

We have shown analytically that this transition can ge
erally be expected to be a first-order phase transition. W
out loss of generality, the following assumptions are ma
A data set withp data points in anN-dimensional Euclidian
space is considered, where the center of mass is taken t
the origin. The eigenvectors of the correlation matrixC with
elementsCi j 5(1/p)(n51

p xi
nxj

n are chosen as the orthonorm
basis and the eigenvalues are arranged as follows:l1>l2
>•••>lN . The numberS of cluster vectors is fixed (S
.1). Investigating the stability of the c.m. solution, the fre
energy function~2! can be expanded as a function of theya
in an (N3S)-dimensional Taylor series about the origin. Th
second term~Hessian matrix! of the expansion reads

H5
2p

S F 122bSA2
1

S
BD ^CG , ~4!
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Aab5dab , Bab[1 ;a,bP1, . . . ,S. ~5!

An upper boundbsp up to which the Hessian matrix is pos
tive definite and the c.m. solution remains a minimum can
calculated if the eigenvectorY* 5(y1* ,...,yS* )T of the Hes-
sian matrix satisfies the conditions (A^C)•Y* 5l1Y* and
(B^C)•Y* 50. Thusbsp is given by

bsp5
1

2lmax
5

1

2l1
, ~6!

which is identical to thebC in @3#. As the second term of the
series expansion must vanish atb[bsplit, the cluster vectors
fulfill the relations

ya
i 5d i1ya

1, (
a51

S

ya
150. ~7!

FIG. 1. Free energy per data point (f 5F/p) projected on the
splitting direction as a function of the distance to the center of m
for two differentb values.~a! The c.m. solution (g50) gives the
global minimum (b,bsplit) and ~b! for b.bsplit the c.m. solution
gives only a local minimum.
e

Furthermore, the direction of the cluster splitting can be c
culated by maximizing the curvature of the free-energy fu
tion ~2!. Following this, the split cluster vectors have to sa
isfy the condition

y1

y2
5

1

S21
. ~8!

With Eq. ~7! this results in an asymmetry in the degenerat
of these vectors within the eigenvectorY* . Calculating now
the third term of the series expansion, which can be writ
with Eq. ~7! as

(
a,b,c

(
i , j ,k

]3F

]ya
i ]yb

j ]yc
kU

Y50

ya
i yb

j yc
k

52
8b2

S S (
n

~x1
n!3D(

a
~ya

1!3, ~9!

it is obvious that in the case of an asymmetric distribution
the data points and/or finite data sets as well as an asym
ric splitting of the cluster vectors~e.g.,S.2!, the terms on
the right-hand side of Eq.~9! do not vanish. Thus the free
energy function has a saddle point atb5bsplit, which auto-
matically leads to a first-order phase transition in clus
splitting. Moreover, with Eqs.~7! and~8! a projection of the
free-energy function on the splitting direction can be calc
lated by parametrizing the cluster vectors as

y152g, y25~S21!g; ~10!

The results are illustrated in Figs. 1~a! and 1~b! where the
parametrized free energy is plotted as a function ofg for two
different values ofb ~the number of assumed clustersS was

s

FIG. 2. Evolution of the cluster vectors with increasingb ~600
data points!. The circles indicate the center of the data clouds. T
c.m. solution directly splits from one into three distinguishable cl
ter vectors.
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10!. In Fig. 1~a! the global minimum is represented by th
c.m. solution (g50), but there also exists a local minimu
for g,0. A new global minimum can be found atb.bsplit

@Eq. ~6!#, whereas the c.m. solution remains only a loc
minimum @Fig. 1~b!#. If S52, only a symmetrical splitting is
possible. As the third@Eq. ~9!# but not the fourth term of the
Taylor expansion vanishes, the splitting of the cluster vec
is continuous in this case, in analogy to the spontane
magnetization of a ferromagnet@7#. These analytical result
show complete agreement with our numerical simulatio
where the clustering algorithm has been applied on a d
set, as mentioned above@8#.

FIG. 3. Free energy per data point (f 5F/p) as a function of the
annealing parameterb for the ~a! c.m. solution and~b! splitting in
the direction of the center of the data clouds.bC indicates the criti-
cal value at which the splitting should occur; atbsplit the algorithm
performs the splitting.
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Finally, another interesting question was if and und
what circumstances a splitting of one cluster center into m
than two distinguishable cluster centers would occur. T
answer to this question can be given in the following wa
Consider a data set with a symmetrical arrangement on
(n.2) clouds, where the centers of the clouds form a re
lar polygon ~see Fig. 2 forn53!. If the variances of the
clouds are small enough so that the symmetry of the arran
ment is clearly recognizable, one would expect a splitting
one cluster vector inton cluster vectors. This expectatio
proves to be true, as it is shown in Fig. 2. In this case, du
the discontinuity of the transition, no critical value forb can
be calculated analytically. The algorithm persists in a lo
minimum ~c.m. solution! until the barrier between the loca
and global minimum can be crossed~see Fig. 3!. The ‘‘true’’
bC can be numerically calculated by reversing the annea
process~starting at ab value, wheren different cluster vec-
tors exist! and comparing the free-energy functions~Fig. 3!.
As shown above, it is obvious that this splitting is also
first-order phase transition. Furthermore, these results h
been proved to hold forn.3 qualitatively.

Concluding the results, it is now possible to give cle
criteria to determine whether or not a splitting of the c.
solution is a continuous phase transition. It is also evid
from Eq. ~9! that, generally, a first-order transition can b
expected. Therefore, the minimization of the free-ene
function becomes more difficult and the probability
achieving only local minima rises. Nevertheless, in the c
of a ‘‘supervised’’ clustering, i.e., using a small amount ofa
priori knowledge, the ‘‘true parameters’’ can be estimated
a sufficient way.

Special thanks go to G. Reents for his assistance and h
ful discussions and to M. Biehl and W. Kinzel for a critic
reading of the manuscript.
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