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First-order phase transitions in clustering
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A characterization of phase transition in a hierarchical clustering process is achieved by first minimizing the
free-energy function and then calculating the splitting direction of the cluster vectors. Starting from this
derivation, this paper gives physical and mathematical criteria for the characterization of the phase splitting of
one into two distinguishable cluster centers. It is particularly shown that, in general, a first-order phase
transition must be expected. If the investigated data set fulfills a certain symmetry, a splitting of one into more
than two distinguishable cluster centers will occur, which is also in all cases a first-order phase transition.
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The investigation of data sets withoatpriori knowledge p
of their distribution is an important task of data analysis. E x"Pg
Clustering methods are major tools heeee, e.g.[1,2]). y _r=t
This paper refers to a hierarchical clustering algorithm that, a P
without making any further assumptions, has been derived 21 Pa
from the maximum entropy principlg8,4]. Clusters of data "
points are represented Igyparameter vectorg, . It can be with P2 from Eq. (1). Equation(3) was solved numerically

shown[5] that the same results may be obtained from the o . L
maximum-likelihood principle and the corresponding in a deterministic annealing process for a data set similar to

expectation-maximizatiofEM) algorithm([5,6], if a mixture the one of 3], usingp= 1000 data points distributed on four

of a Gaussian distribution with fixed an equal variances incaussian clouds in a two-dimensional Euclidean space (

each iteration step is assumed. Therefore, the annealing pa-2): Starting at smalB values (8=0), g was increased

rameterg in [3] corresponds to the inverse of the variances,tep"_vise by 0.001. At each iteration step, the ”“”.‘ber of dis-
used in the EM algorithm. tinguishable cluster vectprsc and their deg_eneratlon were
For theoretical formulation of clustering a set pfdata c_alculgted. 'I_'he results d|ifer ff’om those| in two essen-
points {x"}?_, and S clustersC, has been considered. In tial points. First, after the “true” number of centers had been
rv=1 a .

order to compare the thermodynamical quantities such a%eached, no “cluster explosion” was foundThe term

free energy and entropy, the number of clus@nsas kept cluster explosion” is used i3] for splitting of n into a
fixed. Describing the stat'e of the system by a set of probabil'jumber greater than+1 distinguishable cluster vectors.

o > o : . We observed a successive splitting of the cluster centers like
ity distribution P for associating data poinis with clusters | "=~ 5" 5" "= e ool ster vectors. This may be
.Ca (specified by the parameter veciqy, we were mterestgd explained by the smaller stepsize in the annealing process.
in the mqst probable set of cluzster vec_tor_s. Introduc[ng a(Rose, Gurewitz, and Fox increasgdxponentially by 10%
squared distance coBL=|x _—Ya| for assigning data PoINt ot each iteration stept].) The second and more interesting
x” to the clustelC, and applying the maximum-entropy prin-

. Ja s D result is the splitting of one cluster vector in the center of
ciple, the association probability is given then by mass of the data sét.m. solution at smallg into two dif-

ferent clusters.

VYa=1,...S, 3)

e BIX"=yal* 1 I We have shown analytically that this transition can gen-
Pe=s =% e A"yl (1) erally be expected to be a first-order phase transition. With-
E e BIX"=yal? out loss of generality, the following assumptions are made:

a=1 A data set withp data points in aiN-dimensional Euclidian

space is considered, where the center of mass is taken to be
with the partition functionZ” [3]. The corresponding free the origin. The eigenvectors of the correlation mattiwith

energy can be derived as element;; = (Up)=P_ lxi”ij are chosen as the orthonormal
basis and the eigenvalues are arranged as follaws\ »
1 1P s =---=\y. The numberS of cluster vectors is fixed §
F=——Inz=-=> In{ > e—le”—yaIZ} (20 >1). Investigating the stability of the c.m. solution, the free-
B B =1 a=1 energy function(2) can be expanded as a function of the

in an (N X S)-dimensional Taylor series about the origin. The
with the total partition functionz=TIP_,Z”. Considering second tern{Hessian matrixof the expansion reads
that the most probable cluster vector set is the one that mini- ) 1
mizes the free-energy functid®), one obtains a fixed-point H= <p 1—2,3(«4— ~ Blec
iteration for the cluster centers S S

, 4
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data points The circles indicate the center of the data clouds. The
c.m. solution directly splits from one into three distinguishable clus-
f ~70.010 ter vectors.

Furthermore, the direction of the cluster splitting can be cal-
culated by maximizing the curvature of the free-energy func-
tion (2). Following this, the split cluster vectors have to sat-
isfy the condition
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With Eq. (7) this results in an asymmetry in the degeneration
of these vectors within the eigenvectét . Calculating now
the third term of the series expansion, which can be written
with Eq. (7) as

FIG. 1. Free energy per data poirft=F/p) projected on the
splitting direction as a function of the distance to the center of mas
for two different 8 values.(a) The c.m. solution ¥=0) gives the
global minimum @< B and(b) for 8= the c.m. solution
gives only a local minimum.

I°F o
i,k
with &5t 1Tk ayaovhaydl,_, e
=6, =1 Vabel,...S 5 8p° )
Aa= b Bav abe ® -~ (2 (Xl)S)Ea: (va)?, (9)

An upper boundg3®P up to which the Hessian matrix is posi-

tive definite and the c.m. solution remains a minimum can bét is obvious that in the case of an asymmetric distribution of
calculated if the eigenvector* =(y7 ,...,y&)" of the Hes- the data points and/or finite data sets as well as an asymmet-
sian matrix satisfies the conditionsi®C)-Y*=\,Y* and ric splitting of the cluster vectorge.g.,S>2), the terms on

(B&C)-Y*=0. ThusBis given by the right-hand side of E(9) do not vanish. Thus the free-
energy function has a saddle point@# 8P, which auto-
o 1 1 matically leads to a first-order phase transition in cluster
B :2)\max: 2_)\1 (6) splitting. Moreover, with Eqs(7) and(8) a projection of the

free-energy function on the splitting direction can be calcu-

which is identical to thes in [3]. As the second term of the 'ated by parametrizing the cluster vectors as

series expansion must vanishg B the cluster vectors _ el )
fulfill the relations Yi==v Y2=(S-1)y; (10)

S The results are illustrated in Figs(al and Xb) where the
yi=5.yL 2 yi=0 7) parametrized free energy is plotted as a functiory &dr two
a Tar o Jan different values of8 (the number of assumed clust@svas
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1.0 . Finally, another interesting question was if and under
@ what circumstances a splitting of one cluster center into more
than two distinguishable cluster centers would occur. The
answer to this question can be given in the following way.
Consider a data set with a symmetrical arrangement of
(n>2) clouds, where the centers of the clouds form a regu-
lar polygon (see Fig. 2 forn=3). If the variances of the
clouds are small enough so that the symmetry of the arrange-
ment is clearly recognizable, one would expect a splitting of
one cluster vector intan cluster vectors. This expectation
proves to be true, as it is shown in Fig. 2. In this case, due to
the discontinuity of the transition, no critical value fBrcan
be calculated analytically. The algorithm persists in a local
40 ‘ , ‘ minimum (c.m. solution until the barrier between the local
0.055 0.06Q,cm 0.065 0.070 and global minimum can be crossezbe Fig. 3. The “true”
B Bc can be numerically calculated by reversing the annealing
procesgstarting at g3 value, wheren different cluster vec-
annealing parametes for the (a) c.m. solution andb) splitting in tors exisp and comparing the free-energy functioisg. 3.

the direction of the center of the data clou@s. indicates the criti- AS shown above, it iS_ QbVious that this splitting is also a
cal value at which the splitting should occur; @' the algorithm  first-order phase transition. Furthermore, these results have

performs the splitting. been proved to hold fon>3 qualitatively.

Concluding the results, it is now possible to give clear
criteria to determine whether or not a splitting of the c.m.
) X - solution is a continuous phase transition. It is also evident
c.m. solution ¢=0), but there also exists a local MINMUM from Eq. (9) that, generally, a first-order transition can be
for y<0. A new global minimum can be found A= expected. Therefore, the minimization of the free-energy
[Eq. (6)], whereas the c.m. solution remains only a localnction becomes more difficult and the probability of
minimum(Fig. 1(b)]. If S=2, only a symmetrical splitting is  5¢chieving only local minima rises. Nevertheless, in the case
possible. As the thirfEq. (9)] but not the fourth term of the ¢ 4 “supervised” clustering, i.e., using a small amountof

Taylor expansion vanishes, the splitting of the cluster vectorgyiori knowledge, the “true parameters” can be estimated in
is continuous in this case, in analogy to the spontaneous gyficient way.

magnetization of a ferromagngt]. These analytical results
show complete agreement with our numerical simulations Special thanks go to G. Reents for his assistance and help-
where the clustering algorithm has been applied on a datful discussions and to M. Biehl and W. Kinzel for a critical

0.0 - R

FIG. 3. Free energy per data poirit{ F/p) as a function of the

10). In Fig. 1(a) the global minimum is represented by the

set, as mentioned aboy8]. reading of the manuscript.
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